截止2025年02月28日,共发表SCI论文28篇,论文总被引826次,h指数11,i10指数13,论文发表详情见谷歌学术或Research Gate( https://www.researchgate.net/profile/Jie_Xiong29 )。 ● Y. Yu, J. Xiong*, X. Wu, Q. Qian*, From Small Data Modeling to Large Language Model Screening: A Dual-Strategy Framework for Materials Intelligent Design. Advanced Science. (2024) ● J. X. Ma, B. Cao, S. Y. Dong, Y. Tian, M. H. Wang, J. Xiong*, S Sun*. MLMD: a programming-free AI platform to predict and design materials. NPJ Computational Materials. (2024) ● S. Y. Zhang, B Cao, T. H. Su, Y. Wu, Z. J. Feng, J. Xiong*, T. Y. Zhang*. Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns. IUCrJ. (2024) ● J. Xiong*, B. W. Bai, H. R. Jiang, A. Faus-Golfe. Determinants of saturation magnetic flux density in Fe-based metallic glasses: insights from machine-learning models. Rare Metals. (2024) ● H. Tian#, J. Xiong#, L. Zhao, J. Mei, Y. Qi, J. W. Wu, K. K. Li, J. C. He*, T. Y. Zhang*. Enhanced vacuum brazing joining between Ti-48Al-2Cr-2Nb/Ti-22Al-25Nb intermetallic alloys by Zr-free Ti-based filler. Journal of Materials Research and Technology. (2024) ● Y. Wu, T. H. Su, B. S. Du, S. B. Hu*, J. Xiong*, D. Pan*. Kolmogorov-Arnold Network Made Learning Physics Laws Simple. The Journal of Physical Chemistry Letters. (2024) ● J. Xiong, J. C. He*, X. S. Leng*, T. Y. Zhang*. Gaussian process regressions on hot deformation behaviors of FGH98 Nickel-based powder superalloy. Journal of Materials Science & Technology. (2023) ● R. Zhao, J. C. He*, H. Tian, Y. J. Jing, J. Xiong*. Application of Constitutive Models and Machine Learning Models to Predict the Elevated Temperature Flow Behavior of TiAl Alloy. Materials (2023) ● J. Xiong*, T. Y. Zhang*. Data-driven glass-forming ability criterion for bulk amorphous metals with data augmentation. Journal of Materials Science & Technology. (2022) ● J. Xiong#, T. X. Lei#, D. M. Fu, J.W. Wu, T. Y. Zhang*. Data driven discovery of an analytic formula for the life prediction of Lithium-ion batteries. Progress in Natural Science: Materials International. (2022) ● A. R. Wei, H. Ye, Z. B. Guo, J. Xiong*. SISSO-assisted prediction and design of mechanical properties of porous graphene with a uniform nanopore array. Nanoscale Advance. (2022) ● J. Xiong, S.Q. Shi*, T.Y. Zhang*. Machine learning of phases and mechanical properties in complex concentrated alloys. Journal of Materials Science & Technology. (2021) ● J. Xiong, S.Q. Shi*, T.Y. Zhang*. Machine learning of prediction of glass-forming ability in bulk metallic glasses. Computational Materials Science. (2021) ● J. Xiong, S. Q. Shi*, T. Y. Zhang*. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Materials & Design. (2020) ● J. Xiong, S. Q. Shi*, T. Y. Zhang*. Machine learning of mechanical properties of steels. Science China Technological Science. (2020) ● J. Xiong, S. Q. Shi*, T. Y. Zhang*. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Communication. (2019) ● J. Xiong, Q. Cai, Z. Q. Ma*, L. M. Yu, Y. C. Liu*. Enhancement of Critical Current Density in MgB2 Bulk with CNT-coated Al Addition. Journal of Superconductivity and Novel Magnetism. (2014) |