王元庆长期从事能源与催化领域的研究,研究方向主要集中于热催化以及电催化相关的机理研究。王元庆利用理论计算提出离子液体电催化还原二氧化碳的分子机制;利用拉曼光谱解析了金属氧化物催化剂上分子氧的活化过程以及对烷烃选择氧化的影响;作为主持人主持了日本理化学研究所的一项科研奖励基金项目;在化学、化工、能源和催化等领域SCI学术期刊上共发表了30+篇学术论文;SCI论文已被引用超过800次;获邀在Springer和CRC等出版社发表英文著作章节3篇(一作)。 [1] Zhang, P., Fan J., Wang Y.*, Dang Y., Heumann S.*, Ding Y.* Insights into the role of defects on the Raman spectroscopy of carbon nanotube and biomass-derived carbon. Carbon 2024, 222, 118998. [2] Hu, Z., Yan, Q., Wang, Y.* Dynamic surface reconstruction of perovskite oxides in oxygen evolution reaction and its impacts on catalysis: A critical review. Materials Today Chemistry 2023, 34, 101800. [3] Li, Y., Zhu, R., Wang, Y.*, Feng, L.*, Liu, Y.* Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides. NPJ Computational Materials 2023, 9 (1), 109. [4] Wang, J.#, Xie, H.#, Wang, Y.*, Ouyang, R.* Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts. Journal of the American Chemistry Society 2023. 145 (20), 11457-111465. [5] Wang, Y., Rosowski, F., Schlögl, R., Trunschke, A. Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C 2022, 126, 7, 3443–3456. [6] Wang, Y.*, Hayashi, T., He, D., Li, Y., Jin, F., Nakamura, R.* A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental 2020, 264, 118495. (一作兼共同通讯作者) [7] Wang, Y., Wang, F., Li, C., Jin F. Kinetics and mechanism of reduction of CO2 by glycerol under alkaline hydrothermal conditions. International Journal of Hydrogen Energy 2016, 41(21), 9128-9134. [8] Duo, J., Jin, F.*, Wang, Y.*, Zhong, H., Yao, G., Lyu, L., Huo, Z. NaHCO3-enhanced Fe oxidation and in-situ efficient NaHCO3 reduction into formic acid. Chemical Communications 2016, 52, 3316-3319. (共同通讯作者) [9] Wang, Y., Hatakeyama, M., Ogata, K., Nakamura, S., Jin, F. Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system, a theoretical study. Physical Chemistry Chemical Physics 2015, 17 (36), 23521-23531. [10]Wang, F.#, Wang, Y.#, Jin, F., Yao, G., Huo, Z., Zeng, X., Jing, Z. One-pot hydrothermal conversion of cellulose into organic acids with CuO as an oxidant. Industrial & Engineering Chemistry Research 2014, 53 (19), 7939-7946. (共同一作) [11]Wang, Y., Jin, F., Sasaki, M., Wahyudiono, Wang, F., Jing, Z., Goto, M. Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AIChE Journal 2013, 59 (6), 2096-2104. [12]Wang, Y., Jin, F., Zeng, X., Yao, G., Jing, Z. A novel method for producing hydrogen from water with Fe enhanced by HS- under mild hydrothermal conditions. International Journal of Hydrogen Energy 2013, 38 (2), 760-768. [13]Wang, Y., Jin, F., Zeng, X., Ma, C., Wang, F., Yao, G., Jing, Z. Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions. Applied Energy 2013, 104, 306-309. [14]Wang, Y., Wang, F., Jin, F., Jing, Z. Effects of metals and Ni3S2 on reactions of sulfur species (HS-, S and S2O32-) under alkaline hydrothermal conditions. Industrial & Engineering Chemistry Research 2013, 52 (16), 5616-5625. [15]Werny, M., Wang, Y., Girgsdies, F., Schlögl, R., Trunschke, A. Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane. Angewandte Chemie International Edition 2020, 59 (35), 14921-14926. [16]Fu, T., Wang, Y., Wernbacher, A., Schlögl., R., Trunschke, A. Single-site vanadyl species isolated within molybdenum oxide monolayers in propane oxidation. ACS Catalysis 2019, 9 (6), 4875-4886. |