截至2024年03月: 一、共发表SCI论文52篇,引用3000多次,h因子19,其中一作、通讯共25篇,具体如下: 1. J. Cheng, L. Gan, J. Zhang*, J. Xi*, et al., Thermoelectric properties of heavily Co-doped β-FeSi2, J. Mater. Sci. Technol., 2024, 187, 248; 2. W. Yao, B. Shi, S. Hu*, P. Zhang, J. Xi*, et al., Temperature-induced band gap renormalization in Mg2Si and Mg2Sn, Phys. Rev. B, 2023, 108, 155205; 3. W. Shi,* M. Yao, J. Xi*, et al., Atomistic insights into the origin of high-performance thermoelectric response in hybrid perovskites, Adv. Sci., 2023, 10, 2300666; 4. M. Yao, J. Xi*, J. Yang*, W. Zhang*, et al., MatHub-2d: A database for transport in 2D materials and a demonstration of high-throughput computational screening for high-mobility 2D semiconducting materials, Sci. China Mater., 2023, 66, 2768; 5. J. Ji, J. Yang, J. Xi*, Y. Long*, W. Zhang*, et al., Delocalized Bi-tetrahedral cluster induced ultralow lattice thermal conductivity in Bi3Ir3O11, Mater. Today Phys., 2023, 32, 101005; 6. S. Dai, J. Ning*, J. Xi*, J. Yang*, et al., Revealing the decisive factors of the lattice thermal conductivity reduction by electron-phonon interactions in half-Heusler semiconductors, Mater. Today Phys., 2023, 31, 100993; 7. J. Ning, J. Yang*, J. Xi*, et al., First-principles study of the temperature-induced band renormalization in thermoelectric filled skutterudites, Phys. Chem. Chem. Phys., 2023, 25, 26006; 8. Y. Li, J. Xi*, J. Yang, et al., Weak electron-phonon renormalization effect caused by the counteraction of the different phonon vibration modes in FeS2, Phys. Scr., 2023, 98, 065902; 9. Z. Zhu, J. Xi*, J. Yang, Significant reduction in lattice thermal conductivity in a p-type filled skutterudite due to strong electron-phonon interactions, J. Mater. Chem. A, 2022, 10, 13484; 10. J. Xi, L. Xi, J. Yang*, Perspective of the electron-phonon interaction on the electrical transport in thermoelectric/electronic materials, Appl. Phys. Lett., 2022, 120, 190503; 11. J. Ning, J. Xi*, J. Yang*, et al., Temperature-dependence of the band gap in the all-inorganic perovskite CsPbI3 from room to high temperatures, Phys. Chem. Chem. Phys., 2022, 24, 16003; 12. Y. Sheng, J. Xi*, Y. Han*, J. Yang*, et al., Accelerating the discovery of Cu-Sn-S thermoelectric compounds via high-throughput synthesis, characterization, and machine learning-assisted image analysis, Chem. Mater., 2021, 33, 6918; 13. J. Xi, J. Yang*, W. Zhang*, et al., Temperature-dependent structural fluctuation and its effect on the electronic structure and charge transport in hybrid perovskite CH3NH3PbI3, J. Comput. Chem., 2021, 42, 2213; 14. Z. Wang, J. Xi*, J. Yang*, et al., Temperature-dependent band renormalization in CoSb3 skutterudites due to Sb-ring-related vibrations, Chem. Mater., 2021, 33, 1046; 15. J. Ding, J. Xi*, J. Yang*, et al., Thermoelectric transport properties in chalcogenides ZnX (X=S, Se): From the role of electron-phonon couplings, J. Materiomics, 2021, 7, 310; 16. C. Liu, J. Yang*, J. Xi*, X. Ke*, et al., Strong electron-phonon interaction induced significant reduction in lattice thermal conductivities for single-layer MoS2 and PtSSe, Mater. Today Phys., 2020, 5, 100277; 17. Y. Zhang, J. Xi*, J. Yang*, et al., Temperature-dependent band gaps in several semiconductors: from the role of electron-phonon renormalization, J. Phys.: Condens. Matter, 2020, 32, 475503; 18. C. Liu, J. Yang, J. Xi*, X. Ke*, The origin of intrinsic charge transport for Dirac carbon sheet materials: roles of acetylenic linkage and electron-phonon couplings, Nanoscale, 2019, 11, 10828; 19. J. Xi, D. Wang, Z. Shuai*, et al., Theoretical Studies on the deformation potential, electron-phonon Coupling, and carrier transports of layered systems, Acta Phys. -Chim. Sin., 2018, 34, 961; 20. J. Xi, X. Xu*, Understanding the anion-π interactions with tetraoxacalix[2]arene[2]triazine, Phys. Chem. Chem. Phys., 2016, 18, 6913; 21. J. Xi, D. Wang, Z. G. Shuai*, Electronic properties and charge carrier mobilities of graphynes and graphdiynes from first principles, WIRES: Comput. Mol. Sci., 2015, 5, 215; 22. J. Xi, D. Wang, Z. Shuai*, et al., Tunable electronic properties of two-dimensional transition metal dichalcogenide alloys: A first-principles prediction, J. Phys. Chem. Lett., 2014, 5, 285; 23. J. Xi, D. Wang, Z. Shuai*, et al., Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys., 2014, 141, 034704; 24. Y. Chen, J. Xi (co-first), L. Xie*, et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys, ACS Nano, 2013, 7, 4610; 25. J. Xi, D. Wang, Z. Shuai*, et al., First-principles prediction of charge mobility in carbon and organic nanomaterials, Nanoscale, 2012, 4, 4348.
二、其他: 1. 授权发明专利:奚晋扬、郑亮亮、杨炯,一种基于电声重整化计算有限温度下CsPbI3带隙的方法,2022,授权公告号CN113327648B; 2. 软件著作权:奚晋扬、戴胜男、杨炯,基于电声相互作用的热输运软件V1.0, 2023, 登记号2023SR0664882. |